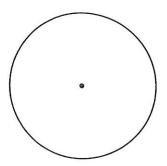
Sharing Equally

Home Link 3-1		
NAME	DATE	TIME

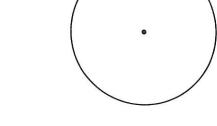
Use drawings to help you solve the problems. Solve each problem in more than one way. Show your work.

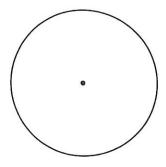

	greater gear work.	156-157
1	Four friends shared 5 pizzas equally. How much pizza did each friend get?	
	pizzas	
	One way:	
	Another way:	
_		
2	Five kittens are sharing 6 cups of milk equally. How much milk does each kitten	get?
	cups of milk	
	One way:	
	Another way:	

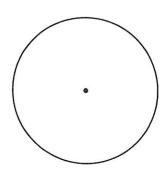
- 4 List all the factors of 18.
- 5 List all the factors of 18 that are prime. _____
- 6 List all the factor pairs of 40.

 and	;	and
 and	:	and

Fraction Circles


1 Divide into 4 equal parts. Shade $\frac{1}{4}$.

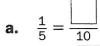

2 Divide into 8 equal parts. Shade $\frac{2}{8}$.



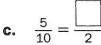
3 Divide into 12 equal parts. Shade $\frac{3}{12}$.

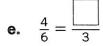
Create your own. Divide into equal parts and shade a portion. Record the amount you shaded.

(5) What patterns do you notice in Problems 1 through 3?


- (6) List the next 4 multiples of 5. 20, _____, ____, ____, _____, _____
- 7) List all the factors of 48. _____
- 8 List the factors of 48 that are composite.

Finding Equivalent Fractions


Use the number lines to help you answer the following questions.


- Fill in the blank with = or \neq .
 - **a.** $\frac{2}{3}$ $\frac{1}{3}$
 - **b.** $\frac{2}{6}$ ____ $\frac{1}{3}$
 - **c.** $\frac{2}{6}$ _____ $\frac{2}{5}$
 - $\frac{1}{5}$ _____ $\frac{2}{10}$
 - $\frac{2}{12}$ $\frac{1}{6}$
- Fill in the missing numbers.

b.
$$\frac{4}{12} = \frac{ }{3}$$

Circle the number sentences that are NOT true.

a.
$$\frac{3}{12} = \frac{1}{4}$$

b.
$$\frac{1}{2} = \frac{5}{10}$$

c.
$$\frac{2}{6} = \frac{2}{5}$$

d.
$$\frac{7}{10} = \frac{4}{6}$$

e.
$$\frac{q}{10} = \frac{11}{12}$$

Practice

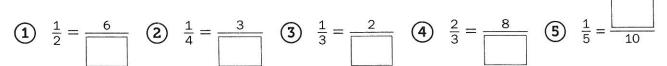
Solve using U.S. traditional addition or subtraction.

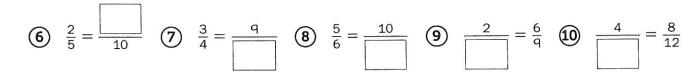
$$7) = 2,004 - 1,716$$

Finding Equivalent Fractions

Family Note Today students learned about an **Equivalent Fractions Rule**, which can be used to rename any fraction as an equivalent fraction. The rule for multiplication states that if the numerator and denominator are multiplied by the same nonzero number, the result is a fraction that is equivalent to the original fraction.

For example, the fraction $\frac{1}{2}$ can be renamed as an infinite number of equivalent fractions. When you multiply the numerator 1 by 5, the result is 5. When you multiply the denominator 2 by 5, the result is 10.


$$\frac{\mathbf{1} \times \mathbf{5}}{2 \times \mathbf{5}} = \frac{5}{10}$$


This results in the number sentence $\frac{1}{2} = \frac{5}{10}$. If you multiplied both the numerator and denominator in $\frac{1}{2}$ by 3, the result would be $\frac{3}{6}$, which is also equal to $\frac{1}{2}$.

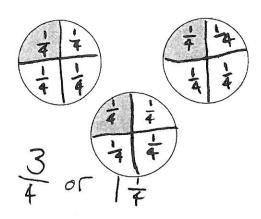
Fill in the boxes to complete the equivalent fractions.

Example: $\frac{1}{2} = \frac{3}{6}$

11) Name 3 equivalent fractions for $\frac{1}{2}$.

Practice

12) List all the factors of 56.


Write the factor pairs for 30._____ and _____, ___ and _____, ___ and _____,____ and _____

(14) Is 30 prime or composite?

Sharing Veggie Pizza

(1) Karen and her 3 friends want to share 3 small veggie pizzas equally. Karen tried to figure out how much pizza each of the 4 children would get. She drew this picture and wrote two answers.

- a. Which of Karen's answers is correct? _____
- **b.** Draw on Karen's diagram to make it clear how the pizza should be distributed among the 4 children.
- 2 Erin and her 7 friends want to share 6 small veggie pizzas equally.

 How much pizza will each of the 8 children get?
- Who will get more pizza, Karen or Erin?

 Explain or show how you know.

Practice

- (4) List all the factors of 50.
- (5) Is 50 prime or composite? _____
- (6) Write the factor pairs for 75.

_____ and _____ ___ and _____

_____ and ____

Solving Fraction Comparison Number Stories

Home Link 3-6		
IAME	DATE	TIME

Solve the problems below.

Tenisha and Christa were each reading the same book. Tenisha said she was $\frac{3}{4}$ of the way done with it, and Christa said she was $\frac{6}{8}$ of the way finished.

Who has read more, or have they read the same amount?

How do you know? _____

2 Heather and Jerry each bought an ice cream bar. Although the bars were the same size, they were different flavors. Heather ate $\frac{5}{8}$ of her ice cream bar, and Jerry ate $\frac{5}{10}$ of his.

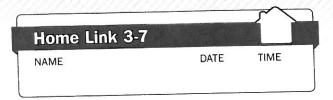
Who ate more, or did they eat the same amount? _____

Write a number sentence to show this.

(3) Howard's baseball team won $\frac{7}{10}$ of its games. Jermaine's team won $\frac{2}{5}$ of its games. They both played the same number of games.

Whose team won more games, or did they win the same amount?

How do you know? _____

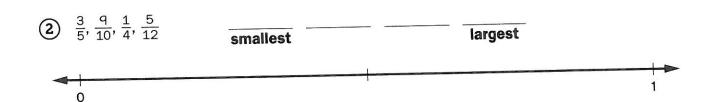

Write your own fraction number story. Ask someone at home to solve it.

Practice

Write T for true or F for false.

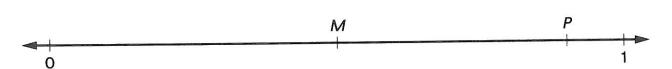
- **(5)** 1,286 + 2,286 = 3,752 ____
- **6** 9,907 9,709 = 200 ____
- (7) 2,641 + 4,359 = 2,359 + 4,641 ____
- **(8)** 2,345 198 = 2,969 822 ____

Comparing and Ordering Fractions



Write the fractions from smallest to largest, and then justify your conclusions by placing the numbers in the correct places on the number lines.

Names for Fractions and Decimals


Home Link 3-8		
NAME	DATE	TIME

(1) Fill in the blanks in the table below.

SRB
150-151

Number in Words	Fraction	Decimal
one-tenth		
four-tenths		
	8 10	
		0.9
	2 10	
seven-tenths		

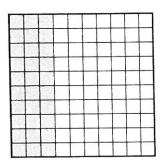
(2) Name two ways you might see decimals used outside of school.

- (3) What decimal is represented by the tick mark labeled M? _____
- (4) What fraction is represented by the tick mark labeled M? _____
- (5) What decimal is represented by the tick mark labeled P? _____
- 6 What fraction is represented by the tick mark labeled P? _____

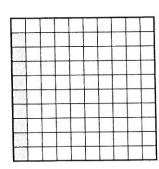
- (7) List all the factors of 100. _____
- (8) List the factors of 100 that are prime.
- (9) Write the factor pairs for 42.

and	and
and	and

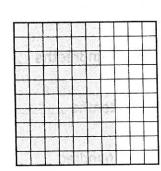
Representing Fractions and Decimals


DATE	TIME
	DATE

If the grid is the whole, then what part of each grid is shaded?


SRB

Write a fraction and a decimal below each grid.

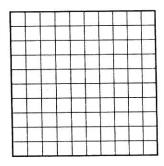


2

3

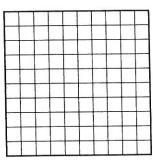
fraction: _____

decimal: _____

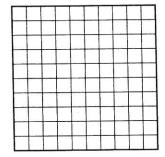

fraction: _____

decimal: _____

fraction: _____


decimal:

4 Color 0.8 of the grid.


(5)

Color 0.04 of the grid.

(6)

Color 0.53 of the grid.

Practice

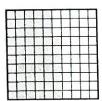
(7) The numbers 81, 27, and 45 are all multiples of 1, _____, and ____.

8 List the first ten multiples of 6.

_____**,**

Tenths and Hundredths

Home Link 3-10		
NAME	DATE	TIME


Family Note Your child continues to work with decimals. Encourage him or her to think about ways to write money amounts. This is called dollars-and-cents notation. For example, \$0.07 (7 cents), \$0.09 (9 cents), and so on.

Write the decimal numbers that represent the shaded part in each diagram.

Whole grid

> **SRB** 149-150

(1)

hundredths

tenths ____ hundredths

(2)

_ hundredths

hundredths

____ tenths ____ hundredths ____ tenths ____ hundredths

Write the words as decimal numbers.

twenty-three hundredths

eight and four-tenths

- thirty and twenty-hundredths
- five-hundredths

Continue each pattern.

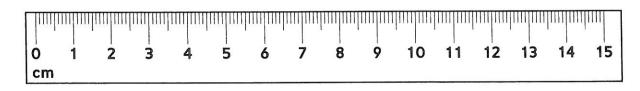
- 0.1, 0.2, 0.3, _____, ____, ____, ____, _____,
- 0.01, 0.02, 0.03, _____, ____, ____, _____


- Round 7,604 to the nearest thousand. _____
- Round 46,099 to the nearest thousand.
- Round 8,500,976 three ways: nearest thousand, hundred-thousand, and million.

Practice with Decimals

Home Link 3-1:	1	
NAME	DATE	TIME

Fill in the missing numbers.



Follow these directions on the ruler below.

- (3)Make a dot at 7 cm and label it with the letter A.
- (4) Make a dot at 90 mm and label it with the letter B.
- (5) Make a dot at 0.13 m and label it with the letter C.
- (6) Make a dot at 0.06 m and label it with the letter D.

1 m = 100 cm

- Write <, >, or =.
 - **a.** 1.2 ____ 0.12

1 cm = 10 mm

- (8) Complete.

cm	m
100	1
	5
1,000	
6,000	

cm	m		
1	0.01		
	0.03		
	0.06		
40			

- 6,366 + 7,565 = _____
- 3,238 + 29,784 = _____ (10)
- 9,325 7,756 = _____
- (12)14,805 - 2,927 =

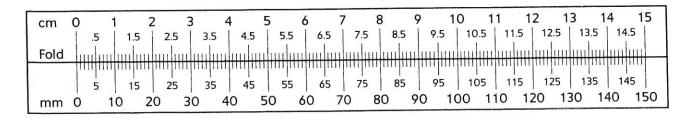
Measuring Centimeters and Millimeters

DATE	TIME
	DATE

Find 6 objects in your home to measure. Use the ruler from the bottom of (1) the page to measure them, first in centimeters and then in millimeters. Record your objects and their measurements. 25

Example: _	crayon	3.5 cm			
Obje	ct		Object		
	cm	mm		cm	mm
	cm	mm		cm	mm
	cm	mm		cm	mm

Fill in the tables.


- (2) mm cm 1 15 3.7 49.6 0.8
- (3) cm m 1 180 23.6 5.72 0.65

Practice

- 4) List the factors for 63.
- (5) Write the factor pairs for 60.

_____ and ____ and ____ and ____ and ____

_____ and ____ _____ and ____ ___ and ____

Comparing Decimals

Family Note Ask your child to read the decimal numerals aloud. Encourage your child to use the following method:

- 1. Read the whole-number part.
- 2. Say and for the decimal point.
- 3. Read the digits after the decimal point as though they form their own number.
- **4.** Say tenths or hundredths, depending on the placement of the right-hand digit. Encourage your child to exaggerate the -ths sound. For example, 2.37 is read as "two and thirty-seven hundredths."

Write >, <, or =.

- 2.35 ____ 2.57
- **(2)** 1.08 ____ 1.8
- 0.64 ____ 0.46
- 0.90 ____ 0.9
- 42.1 ____ 42.09
- 7.09 ____ 7.54
- 0.4 ____ 0.40
- 0.26 ____ 0.21
- > means is greater than
- < means is less than

Example: The 4 in 0.47 stands for 4 tenths or

- (9)The 9 in 4.59 stands for 9 ______ or _____.
- The 3 in 3.62 stands for 3 ______ or _____

Continue each number pattern.

- 6.56, 6.57, 6.58, ______, _____ (11)
- 0.73, 0.83, 0.93, _____, ____, ____

Write the number that is 0.1 more.

Write the number that is 0.1 less.

- 4.3 _____ (14) 4.07 _____
- **(15)** 8.2 _____
- **(16)** 5.63 _____

- 43,589 + 12,641 = _____
 - **(18)** 63,274 + 97,047 = _____
- 41,805 26,426 = _____
- **20** 82,004 11,534 = _____